Simultaneous Bayesian gene tree reconstruction and reconciliation analysis.

نویسندگان

  • Orjan Akerborg
  • Bengt Sennblad
  • Lars Arvestad
  • Jens Lagergren
چکیده

We present GSR, a probabilistic model integrating gene duplication, sequence evolution, and a relaxed molecular clock for substitution rates, that enables genomewide analysis of gene families. The gene duplication and loss process is a major cause for incongruence between gene and species tree, and deterministic methods have been developed to explain such differences through tree reconciliations. Although probabilistic methods for phylogenetic inference have been around for decades, probabilistic reconciliation methods are far less established. Based on our model, we have implemented a Bayesian analysis tool, PrIME-GSR, for gene tree inference that takes a known species tree into account. Our implementation is sound and we demonstrate its utility for genomewide gene-family analysis by applying it to recently presented yeast data. We validate PrIME-GSR by comparing with previous analyses of these data that take advantage of gene order information. In a case study we apply our method to the ADH gene family and are able to draw biologically relevant conclusions concerning gene duplications creating key yeast phenotypes. On a higher level this shows the biological relevance of our method. The obtained results demonstrate the value of a relaxed molecular clock. Our good performance will extend to species where gene order conservation is insufficient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing protein and gene phylogenies by extending the framework of reconciliation

The architecture of eukaryotic coding genes allows the production of several different protein isoforms by genes. Current gene phylogeny reconstruction methods make use of a single protein product per gene, ignoring information on alternative protein isoforms. These methods often lead to inaccurate gene tree reconstructions that require to be corrected before being used in phylogenetic tree rec...

متن کامل

Efficient Algorithms for the Reconciliation Problem with Gene Duplication, Horizontal Transfer and Loss Citation

Motivation: Gene family evolution is driven by evolutionary events such as speciation, gene duplication, horizontal gene transfer and gene loss, and inferring these events in the evolutionary history of a given gene family is a fundamental problem in comparative and evolutionary genomics with numerous important applications. Solving this problem requires the use of a reconciliation framework, w...

متن کامل

Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss

MOTIVATION Gene family evolution is driven by evolutionary events such as speciation, gene duplication, horizontal gene transfer and gene loss, and inferring these events in the evolutionary history of a given gene family is a fundamental problem in comparative and evolutionary genomics with numerous important applications. Solving this problem requires the use of a reconciliation framework, wh...

متن کامل

Bayesian gene/species tree reconciliation and orthology analysis using MCMC

MOTIVATION Comparative genomics in general and orthology analysis in particular are becoming increasingly important parts of gene function prediction. Previously, orthology analysis and reconciliation has been performed only with respect to the parsimony model. This discards many plausible solutions and sometimes precludes finding the correct one. In many other areas in bioinformatics probabili...

متن کامل

A Reconciliation with Non-binary Gene Trees Revisited

By reconciling the phylogenetic tree of a gene family with the corresponding species tree, it is possible to infer lineage-specific duplications and losses with high confidence and hence to annotate orthologs and paralogs. The currently available reconciliation methods for non-binary gene trees are computationally expensive for genome-scale applications. We present four O(|G| + |S|) algorithms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 14  شماره 

صفحات  -

تاریخ انتشار 2009